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A round jet in an ambient co-axial stream 

BY J. F. J. MACZYNSKI 
Department of the Mechanics of Fluids, University of Manchestert 

(Received 20 December 1961) 

Measurements were made of the mean velocity profiles in a jet immersed in a 
stream whose velocity was in the same direction as that of the jet. They showed 
a mean velocity on the jet axis falling inversely as the distance downstream of the 
jet origin, a behaviour demonstrably inconsistent with any theory which assumes 
that the turbulence at each section of the jet is in local equilibrium. A mixing 
length, LM, and a length, Ld, characterizing the rate of dissipation are defined and 
it is shown that LM increases with distance downstream more rapidly than the jet 
width, and Ld less rapidly. 

1. Introduction 
This paper is concerned with the flow of a turbulent jet emitted into a sur- 

rounding fluid having a uniform velocity in the same direction as the jet. The 
flow has some practical importance since it resembles that in ejector pumps and 
certain gas burners, but is also of considerable theoretical interest since it enables 
theories of jets to be tested much more stringently than does the flow of a jet into 
a stationary fluid when the form of the variation of jet width and velocity with 
distance can be predicted on dimensional grounds alone. 

Nearly all theories of jets assume that the turbulence is in equilibrium at 
every cross-section; thus, for example, they may assume an eddy viscosity 
depending on the distance from the nozzle which is proportional to the product 
of the jet width and a characteristic velocity at  that distance (Squire & Trouncer 
1944). The measurements reported here are not consistent with this type of 
theory. It is found that the maximum excess velocity in the jet is closely inversely 
proportional to the distance from the jet nozzle over the whole range covered by 
the measurements (from where the excess jet velocity is much greater than that 
of the ambient stream to where it is much less), and it is shown by a detailed 
discussion of the order of magnitude of the terms in the equation for the turbulent 
energy balance that a consequence of this is that at  large distances downstream 
the effective mixing length is proportional to the distance from the jet nozzle and 
not to the jet width which grows more slowly. 

Previous measurements of compound jets have been made by Forstall & 
Shapiro (1950). In  their equipment, however, the surrounding stream was 
contained in a pipe not very many times larger than the jet itself a t  large distances 
from the nozzle; so, although they found a velocity variation much the same as 
that in the present work, the disagreement with theory was not conclusive. Also 

t Present address : Instytut Podstawowych Problemow Techniki, Krakow, Poland. 
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since the completion of the present work, the author has had his attention called 
to a brief paper by Kobashi (1952) which includes some measurements of 
turbulence in compound jets; these are completely consistent with the con- 
clusions reached here. 

2. Dimensional analysis of a jet in ambient flow 
We shall ignore the initial portion of the jet where the shapes of the nozzle and 

velocity profile in the emergent jet have an appreciable influence on the flow, and 
consider only the region beyond this where the dynamic pressure distribution is 
found to be self-preserving, i.e. the shape of the profile is independent of down- 
stream distance. 

Ps and PT are the static and total pressures relative to atmosphere, and q, 
equal to PT - Ps, is the dynamic pressure which outside the jet takes the constant 
value qA and on the centre line of the jet has the value q,. 

The experiments show that any profile of q - qA can be obtained from another 
by an appropriate change of scale, indicating a self-preservation of the excess 
dynamic pressure: except far downstream from the nozzle, this is not even 
approximately consistent with self-preservation of the excess velocity profile. 
Hencea characteristic value of the excess pressure, sayq, - qA, and a characteristic 
length b, together with a function g(r/b)  are sufficient to describe any profile. Thus 

q - qA = (qC - g(r /b )*  (1) 

These two characteristic profile parameters depend in turn on the distance x 
from the nozzle exit, on the mean exit velocity V,, the nozzle diameter 2h0, and 
the velocity of the ambient stream U,, so that on dimensional grounds,? 

We now introduce a quantity B defined by 

and write B, for its value on the jet centre line. Also for the sake of brevity we 
write H for the 'momentum radius ' which by the principle of conservation of 
momentum is independent of x : 

where M denotes the momentum flux in excess of the ambient stream and U is 
the axial velocity component of the flow in the jet. 

viscosity does not appear in our analysis (Townsend 1956). 
t Since we are concerned with fully developed turbulent flow a t  large Reynolds number, 
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The argument, which appears to be supported by experiment, that far enough 
downstream the jet nozzle may be considered as a point source of momentum, 
suggests that the nozzle radius h, and exit velocity V, are not separately important 
in this region but occur only in combination in H .  Hence for large x, we may 
expect H = f S ( $ )  b and B 

Using the condition that the momentum flux is independent of x ,  a relation can 
be found between b/H and B, for any function g. It is evaluated for a gaussian 
form of g in the Appendix. 

Following Morton, Taylor & Turner (1956) we introduce the lateral spread of 
the jet h and the ' top-hat ' mean velocity V ,  defined by the relations 

The mean values defined above can be understood to be the width and velocity 
in an equivalent jet with a sharp boundary and uniform velocity, V +  U,, 
carrying the same mass flow and excess momentum flux as the actual jet. Using 
V and h the main experimental problem is to find h/H and V/UA as functions of 
x / H ,  where H is given by the relation 

The spread of the profile can be described by either of the two characteristic 
length scales b or h. For any particular form of the function g it is possible to 
derive a relation between b and h as shown in the Appendix (equations A 6 and 
A 8) for the gaussian profile. 

3. The experimental arrangement 
The experiments were performed in the low-turbulence tunnel of the Fluid 

Mechanics Laboratory at  the University of Manchester, which has a working 
section 3m long with a 50 x 50cm cross-section. This tunnel was described in 
detail by Collis (1952). 

The air speed in the tunnel is adjustable up to the top value of about 30 m/sec 
and the turbulence level is particularly low (about 0.04 yo). 

The jet outlet nozzle which was fitted in the tunnel by means of three sets of 
diagonal supporting wires consisted of a piece of 0.64cm bore copper tube 
approximately 57cm long. The tube was supplied with compressed air via a 
needle valve from three receivers each of 45mS capacity. As a result of the 
discharge of air into the jet, the pressure in the reservoirs fell slowly during each 
experiment and it was necessary to adjust the needle valve setting with every 
reading. This, however, proved to be better than continuous pumping which 
introduced pressure fluctuations. 
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The dynamic pressure in the undisturbed flow which was needed to determine 
U, was measured by means of a static tube and a total pressure tube fixed sym- 
metrically with respect to the jet well outside it but beyond the influence of the 
tunnel-wall boundary layers. 

Dynamic pressure in the jet was measured by means of a total pressure tube 
mounted on a traversing gear covering a large portion of the greatest jet spreads 
observed. The vertical position of the probe was determined to an accuracy of 
0.01 cm by means of a telemicroscope mounted on a column. The corresponding 
accuracies in lateral and longitudinal position were 0.02 cm and 0.05 cm 
respectively. 

I I I I I I I I 
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qd = 641 dyn em-2. 
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FIGURE 1. Shape of the jet pipe wake profile at 67 em downstream and 

The jet momentum flux was adjusted by controlling the pressure in the settling 
tank supplying the jet nozzle and was evaluated from actual Pitot traverses of 
the flow rather than from the supply pressure because of the long length of the 
nozzle tube and the uncertainty concerning the friction losses occurring in it. 
It is interesting to note that the nozzle discharge coefficient was found to be 
0,539 2 0.013 (as compared with 0-6 for a sharp orifice) and this provided a check 
against gross errors. 

The presence of the long pipe upstream of the jet exit implies a departure from 
uniformity in the surrounding flow. A measure of the seriousness of this is given 
by the ratio of the drag on the pipe due to the external stream, D, to the excess 
momentum flux in the jet, M .  From the definition of the momentum radius (4) 
and a similar expression for the drag radius H,, this ratio can be written as 

The drag radius was found from a wake traverse (figure 1) at 67 em from the 
nozzle, with no jet, to be 0.28 cm when qA was 641 dyn/cm2. This value is from 
one-thirtieth to one-sixth of H ,  therefore DIM varied from 3 yo to 0.1 yo in the 
range covered by the experiments. 
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As an indication of the accuracy of the pressure measurements in the jet, the 
momentum radius deduced from them was found to be independent of x to an 
accuracy of 2 yo. 

4. The experimental results 
The shape of the dynamic pressure proJile 

The values of dynamic pressure were corrected for the static pressure defect, 
which was found to be of the order of 1 yo at the centre of the jet. Four profiles of 
the dynamic pressure (q  - qA) representing traverses near the nozzle and far 
downstream are shown on figure 2. They are replotted on figure 3 where the 
vertical scale is the logarithm of q - qA and the horizontal scale is the square of the 
distance from the centre line, so that if a profile of q - qA were gaussian it would be 
represented on the graphs by a straight line. 

r (em) 
FIGTJRE 2. Shape of the tote1 pressure profles (q -qa)  for pressures before jet nozzle 
PJ = 0.491 x 106 dyn 
curve (b) 108.2cm from the nozzle, qA = 2570dyn~m-~;  curve (c) 24.18cm from the 
nozzle, qa = 2600 dyn 

Curve (a) 16.8 em from the nozzle, pa = 5670 dyn 

curve (d) 133.5 cm from the nozzle, pa = 5759 dyn 

It is seen that near the centre of the jet the profiles follow the gaussian form but 
that near the edge they fall off with distance somewhat more steeply. This 
deviation is found consistently and cannot be attributed to experimental error. 
It is probably associated with the radial inflow into the jet which inhibits turbu- 
lent spreading and is most important in the outer part for two reasons. First of 
all the lateral inflow changes sign when we proceed from the centre line outwards 
and has therefore the opposite effect in the central part of the jet. Furthermore 
it is where the axial flow induced by the jet is weakest that the effect of lateral 
inflow on the spreading is most pronounced. 
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Axial variation of the mean flow 
The range of values of B, covered in the experiments waa from 0.339 to 21.0 and 
was achieved by making measurements at several values of x using various 
combinations of jet exit velocity and tunnel speed. 

o10 40 60 80 100 120 140 160 180 200 
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arbitrary proportional scales. 
FIGURE 3. Plots of curves (a), (b ) ,  (6) ltnd (d) from figure 2 as log(q-q,) v8 ra with 

The momentum radius H was found from equation (A 4) of the Appendix using 
values of b obtained from plots of log B against r2. Bcl was then plotted against 
x/H as shown on figure 4. A smooth curve obtained from these points was used 
to compute h/H, V/V, and Vx/Voho as functions of x/H; these are shown in 
figure 5. 

can be regarded as a convenient summary of the measurements together with the 
approximately gaussian shape of the profiles. 

The relation 0*144V~/Tr,h, = 1 (8) 

The form of the variation of h with x may be calculated from (8) and (7). 

h = 0*144~(1+0.144~/H)-), (9) 

(10) 

which at  small x/H reduces to the linear spread known for a jet in still air. Hence 

& -  dh - 0.144( 1 + 0 - 0 7 2 4 H )  (1 + O.l44x/H)-8, 

which shows that the rate of increase of the jet radius tends to a constant when 
x/H tends to zero and to zero when x/H tends to infinity. 
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X P  

FIGURE 4. The variation of centre line excess pressure coefficient B, with dimensionless 
distance downstream xIH. 

" /H 

FIGURE 5. Dimensionless 'top-hat' mean velocity VIVA, jet spread h/H,  jet ratio h/x, 
lateral influx ( ~ ~ r ) ~ / J ' ~ h , , ,  as functions of x /H .  
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The lateral inJlux 

The variation of the lateral influx appears to be an important feature distin- 
guishing jets with and without ambient streams. For the sake of brevity we can 
characterize the lateral inflow by the dimensionless quantity - v, r/ Vh, where v,r 
is the product of the radial velocity component and the radius measured from the 
jet centre line. We are concerned here with the limit of this product at large r. 

The equation of continuity, 

Or, making use of the definitions (6a)  and ( 6 b )  and momentum equation (cf. 
Appendix equation (A 3)), we obtain 

which according to the velocity decay relation (cf. equation 8) becomes 

= - 0.07.q 1 + 0*144x/H)-'. (urr)r=m 

V,ho 
(14) 

This may be written as 

(15) ____- (2jr r)r=co - - 0.07%( 1 + 0.144x/H)-$, 
V h  

by virtue of (9). 
Equation (15) shows how the lateral inflow - (v,r)/'vh falls from the constant 

value 0.072, appropriate to jet in a fluid at  rest, to zero at  large distances down- 
stream of the orifice, characteristic of a wake. The total rate at which ambient 
fluid is entrained is made up from a combination of the lateral (jet-like) inflow and 
encroachment of the jet boundary on the ambient flow, as in a wake. Accordingly 
i t  is given by 

d( Vh2)/dx + U, d(h2)/dx = (d /dx)  ( V + U,) h2, 

= 0*144Vh(l+ 0*144(~/H))*.  (16 )  

5. Discussion 
The relation (8) which has been found for the variation of 'v with x is not what 

would be expected from any simple theory which assumes that the rate of mixing 
a t  any cross-section of the jet is determined only by V and h at that cross-section 
and is independent of the history of the motion. Indeed in its simplest form such 
a theory would assume that the entrainment coefficient defined by 
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would be a constant throughout the motion. Equation (16) shows that this is not 
even approximately so. That E should increase between the initial region of the 
jet where B, 9 1 and the region far downstream where B, < 1 is not very sur- 
prising since in the initial region the inflow velocity is large and may tend to 
inhibit mixing, while far downstream it is small and the flow is more like that of 
a wake which is known to have a greater value for the entrainment constant (cf. 
Townsend 1956). 

However, on this argument alone one would expect E to become asymptoti- 
cally constant far downstream, where the wake-like character is achieved; but 
there is no sign of this happening.? It therefore seems worthwhile to examine 
briefly the asymptotic behaviour of the various terms in the equation of motion 
in the hope of learning more about the mechanism of the flow. It is 

From equations (8) and (9) the V and h are seen to behave like x-l and x i  
respectively when x --f 00. The first term in the equation of motion thus behaves as 

u a u l a x  uAdv/ax = o(x-2). 

From the continuity equation, 

v,r = aU/axr' dr' = O ( ~ / X ) ~  = O(x-l) 1: 
if we follow a line r/h = const. 

Therefore the second term in (18) becomes 

V, au/ar = O(X-1) o(z-4) O(X-1) O(X-4) = o ( x - ~ ) ,  

which is less than the first term. 
The pressure term vanishes, since there is no pressure gradient in an unbounded 

jet. The Reynolds stress term must adjust itself to fit the first term of the equation 
of motion, and 

Hence 7- = O(x-8). 

a+% = O(r/h) = O ( ~ X - + )  = O(Z-2). 

A t  the same time since the velocity gradient 

auja? = o(x-+), 

h;, = 7-/(aU/&) = O(xo) = const. 

the mean eddy viscosity becomes 

(19) 
A length LA, may be defined by h;, = u'LM, where u' is characteristic of the 

turbulent velocity. It is obvious that for u' = O( V )  = O(x-l), LM is O(x) and not 
O(h)  as a spreading dependent on purely local flow properties at a cross-section 
would suggest. If more generally we assume that 

u' = O(x-U), (20) 

and -&I!! = 0 ( x U ) ,  (21) 
t It is true that the minimum excess velocity measured was roughIy 10 yo of the main 

stream velocity and may still be rather too large for the asymptotic wake state to have 
been reached, but one would expect to have found a trend towards it. 
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and consider the turbulent energy balance in the flow it is seen that (a)  the rate 
of production of turbulent energy is O(h.27 aU/ar) = O ( X - ~ ) ;  (b)  if the dissipation 
of this energy involves a length Ld = O(xc), the total rate of dissipation per unit 
length of jet is 

( c )  the rate of change of total turbulent energy is 

O(h2 uI3/La) = O ( X ~ - ~ ~ - ~  1; 

The order of magnitude equation of turbulent energy balance may thus be 
written as 

O{d(u2hZ)/dx) = - O(hZu3/La) + O(hZU/r), 

- 0 ( ~ - 2 a )  = - 0(~1-3a-c)  + 0 ( ~ - 2 ) .  

( 2 2 )  

which for a $: 4 is equivalent to 

(23) 

The signs are preserved since they convey the behaviour of the terms more 
explicitly. 

Since the flow region increases in size with increasing x it seems plausible that 
Ld should either grow with x or remain constant, a decrease being improbable. 
Hence c 2 0. 

The three exponents - 2a, 1 - 3a - c, - 2 may be either (i) all three equal with 
a = 1, c = 0 (this is when all three terms in the turbulent energy balance are of 
equal order of magnitude); or (ii) two of the three are equal and the third is 
smaller, which means that one term decays more rapidly than the others. 

Alternative (ii) shows that there are three relations possible between c and a. 
These are: (a)  c = 1 -a, with a =+ 3 which corresponds to the rate of production 
of turbulent energy becoming negligible; ( b )  a = 1, implying negligible dissipa- 
tion. This case is excluded because the dissipative term must be the controlling 
term if the equation is to be balanced, the other two terms being of the same sign; 
(c) c = 3(1 -a)  < 0 which occurs for a > 1, and corresponds to production and 
dissipation dominating the energy balance. This possibility must be ruled out 
since c 2 0. 

We are left thus with c = 1 -a and the isolated possibility a = 4, c = $ (for 
constant total turbulent energy). 

Clearly extensive measurements of the turbulence are required to elucidate the 
mechanism of the flow. A few preliminary measurements of turbulent intensity 
have been made. They are plotted on figure 6 which shows the ratio of the R.M.S. 

turbulent velocity at  the jet centre line to B as a function of x / H .  This ratio 
appears to be approximately constant, consistent with a = 1, LM = O(x)  and 
La = constant, indicating that all three terms in (19) are of comparable order of 
magnitude. 

The surprising implication of the above result is that neither of the two length 
scales required to describe the broad features of the jet turbulence is proportional 
to the width of the jet; the mixing length LM increases more rapidly than h and 
the dissipation length La less rapidly. 
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FIUURE 6. The ratio of the measured R.M.S. turbulence velocity u’ to the mean top-hat 

excesa velocity V for variable x / H .  
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Appendix 
Consider the gaussian form of the dynamic pressure profile B. 

B = B,(x) exp [ - r2/b2(z)]. (A 1) 

Since by definition the velocity ratio U/U, is given by (4), 

u/u, = ( 1 + B ) f ,  

the expression for the total momentum flux is 

( U2 - UU,) 2r dr = 2PA(lrB2r dr -sm [(B + 1)i  - 11 2r dr) (A 3) 
0 
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which integrated yields: 

M = 2P' b2{Bc - 3[( 1 + Bc)B - 1 -In &(( 1 + B,)i + l)]). 

H = b[B, - 2P(B,)]* = b[B, - 2/?c]&, 

(A 4) 

The above formula can be used to compute the momentum radius H (cf. 
equation (4)). 

where p is introduced for the square bracket in (A 4). 

the excess pressure coefficient on the axis the following relations are obtained: 

(A 5) 

Expressing the non-dimensional characteristics of the jet flow as functions of 


